Post has shared content

Post has shared content
Today, renewable energy is slowly becoming a viable alternative to traditional fossil fuels. For instance, every year, wind turbines across the world produce more than 65 billion kWh of power, enough to meet the energy needs of around 6 million homes. When it comes to their installation, however, wind turbines usually require wide open spaces, which are often quite scarce in countries with high population density. A team of scientists, at London’s Kingston University, has come up with an innovative solution that proposes the use of “dead space”, such as the underside of a bridge, for the construction of these turbines.

#windpower     #turbine   #sustainability   #greentechnology  

Corn Flakes

In 1894, Dr. John Harvey Kellogg was the superintendent of the Battle Creek Sanitarium in Michigan. He and his brother Will Keith Kellogg were Seventh Day Adventists, and they were searching for wholesome foods to feed patients that also complied with the Adventists' strict vegetarian diet. When Will accidentally left some boiled wheat sitting out, it went stale by the time he returned. Rather than throw it away, the brothers sent it through rollers, hoping to make long sheets of dough, but they got flakes instead. They toasted the flakes, which were a big hit with patients, and patented them under the name Granose. The brothers experimented with other grains, including corn, and in 1906, Will created the Kellogg's company to sell the corn flakes. On principle, John refused to join the company because Will lowered the health benefits of the cereal by adding sugar.

Indian researchers have developed an innovative method to re-use discarded plastic bags by transforming them into fuel to power car engines.
Researchers developed a relatively low-temperature process to convert certain kinds of plastic waste into liquid fuel as a way to re-use plastic bags and other products.
Among the plastic waste is the common polymer, low-density polyethylene (LDPE), which is used to make many types of container, medical and laboratory equipment, computer components and, of course, plastic bags.
Recycling initiatives are in place in many parts of the world, but much of the polyethylene waste ends up in landfill, dispersed in the environment or in the sea.
Chemist Achyut Kumar Panda of Centurion University of Technology and Management Odisha is working with chemical engineer Raghubansh Kumar Singh of the National Institute of Technology, Odisha, to develop a commercially viable technology for efficiently rendering LDPE into a liquid fuel.
Given that most plastics are made from petrochemicals, this solution to plastic recycling brings the life-cycle full circle allowing a second use as an oil substitute.
The process reported in the International Journal of Environment and Waste Management, could, if implemented on a large enough scale, reduce pressures on landfill as well as ameliorating the effects of dwindling oil supplies in a world with increasing demands on petrochemicals for fuel.
In their approach, the team heats the plastic waste to between 400 and 500 degrees Celsius over a kaolin catalyst. This causes the plastic's long chain polymer chains to break apart in a process known as thermo-catalytic degradation.
This releases large quantities of much smaller, carbon-rich molecules.
The team used the analytical technique of gas chromatography coupled mass spectrometry to characterise these product molecules and found the components of their liquid fuel to be mainly paraffins and olefins 10 to 16 carbon atoms long.
This, they explain, makes the liquid fuel very similar chemically to conventional petrochemical fuels.
In terms of the catalyst, Kaolin is a clay mineral - containing aluminium and silicon. It acts as a catalyst by providing a large reactive surface on which the polymer molecules can sit and so be exposed to high temperature inside the batch reactor, which breaks them apart.
The team optimized the reaction at 450 degrees Celsius a temperature with the lowest amount of kaolin at which more than 70 per cent of the liquid fuel is produced.
In other words, for every kilogramme of waste plastic they could produce 700 grammes of liquid fuel. The byproducts were combustible gases and wax.
They could boost the yield to almost 80 per cent and minimize reaction times, but this required a lot more catalyst one kg of kaolin for every 2 kg of plastic.

List of inventions and discoveries of the Indus Valley Civilization

Button: Ornamental buttons—made from seashell—were used in the Indus Valley Civilization for ornamental purposes by 2000 BCE. Some buttons were carved into geometric shapes and had holes pierced into them so that they could be attached to clothing by using a thread. Ian McNeil (1990) holds that: "The button, in fact, was originally used more as an ornament than as a fastening, the earliest known being found at Mohenjo-daro in the Indus Valley. It is made of a curved shell and about 5000 years old."

Carbon pigment: The source of the carbon pigment used in India ink was India. In India, the carbon black from which India ink is produced is obtained by burning bones, tar, pitch, and other substances. Ink itself has been used in India since at least the 4th century BCE. Masi, an early ink in India was an admixture of several chemical components. Indian documents written in Kharosthi with ink have been unearthed in Xinjiang. The practice of writing with ink and a sharp pointed needle was common in ancient South India. Several Jain sutras in India were compiled in ink.

Calico: Calico had originated in the subcontinent by the 11th century and found mention in Indian literature, by the 12th-century writer Hemachandra. He has mentioned calico fabric prints done in a lotus design. The Indian textile merchants traded in calico with the Africans by the 15th century and calico fabrics from Gujarat appeared in Egypt. Trade with Europe followed from the 17th century onwards. Within India, calico originated in Kozhikode.

Carding devices: Historian of science Joseph Needham ascribes the invention of bow-instruments used in textile technology to India. The earliest evidence for using bow-instruments for carding comes from India (2nd century CE). These carding devices, called kaman and dhunaki would loosen the texture of the fiber by the means of a vibrating string.

 Chaturanga: Map showing origin and diffusion of chess from India to Asia, Africa, and Europe, and the changes in the native names of the game in corresponding places and time. The precursor of chess originated in India during the Gupta dynasty (c. 280-550 CE). Both the Persians and Arabs ascribe the origins of the game of Chess to the Indians. The words for "chess" in Old Persian and Arabic are chatrang and shatranj respectively — terms derived from caturaṅga in Sanskrit, which literally means an army of four divisions or four corps. Chess spread throughout the world and many variants of the game soon began taking shape. This game was introduced to the Near East from India and became a part of the princely or courtly education of Persian nobility. Buddhist pilgrims, Silk Road traders and others carried it to the Far East where it was transformed and assimilated into a game often played on the intersection of the lines of the board rather than within the squares. Chaturanga reached Europe through Persia, the Byzantine empire and the expanding Arabian empire. Muslims carried Shatranj to North Africa, Sicily, and Spain by the 10th century where it took its final modern form of chess.

Chintz: The origin of Chintz is from the printed all cotton fabric of calico in India. The origin of the word chintz itself is from the Hindi language word चित्र् (chitr), which means a spot.

Crescograph: The crescograph, a device for measuring growth in plants, was invented in the early 20th century by the Bengali scientist Sir Jagadish Chandra Bose.

Crucible steel: Perhaps as early as 300 BCE—although certainly by 200 CE—high quality steel was being produced in southern India also by what Europeans would later call the crucible technique. In this system, high-purity wrought iron, charcoal, and glass were mixed in a crucible and heated until the iron melted and absorbed the carbon. The first crucible steel was the wootz steel that originated in India before the beginning of the common era. Archaeological evidence suggests that this manufacturing process was already in existence in South India well before the Christian era.

Dock (maritime): The earliest known docks were not South Asian, but rather those discovered in Wadi al-Jarf, an ancient Egyptian habor dating from 2500 BCE located on the Red Sea coast. A structure at Lothal (2400 BCE) is considered the earliest Indian dock by some archaeologists, apparently located away from the main current to avoid deposition of silt. Modern oceanographers have observed that the Harappans must have possessed knowledge relating to tides in order to build such a dock on the ever-shifting course of the Sabarmati, as well as exemplary hydrography and maritime engineering. This was the earliest known dock found in the world, equipped to berth and service ships. It is speculated that Lothal engineers studied tidal movements, and their effects on brick-built structures, since the walls are of kiln-burnt bricks. This knowledge also enabled them to select Lothal's location in the first place, as the Gulf of Khambhat has the highest tidal amplitude and ships can be sluiced through flow tides in the river estuary. However, these speculations have been called into question, as it has been suggested by other archaeologists that the supposed dockyard at Lothal was nothing more than an irrigation tank.

Cotton being dyed manually in contemporary India.

Incense clock: Although popularly associated with China the incense clock is believed to have originated in India, at least in its fundamental form if not function. Early incense clocks found in China between the 6th and 8th centuries CE—the period it appeared in China all seem to have Devanāgarī carvings on them instead of Chinese seal characters. Incense itself was introduced to China from India in the early centuries CE, along with the spread of Buddhism by travelling monks. Edward Schafer asserts that incense clocks were probably an Indian invention, transmitted to China, which explains the Devanāgarī inscriptions on early incense clocks found in China. Silvio Bedini on the other hand asserts that incense clocks were derived in part from incense seals mentioned in Tantric Buddhist scriptures, which first came to light in China after those scriptures from India were translated into Chinese, but holds that the time-telling function of the seal was incorporated by the Chinese.
Indian clubs: The Indian club—which appeared in Europe during the 18th century—was used long by India's native soldiery before its introduction to Europe. During the British Raj the British officers in India performed calisthenic exercises with clubs to keep in for physical conditioning. From Britain the use of club swinging spread to the rest of the world.

Iron and mercury coherer: In 1899, the Bengali physicist Sir Jagdish Chandra Bose announced the development of an "iron-mercury-iron coherer with telephone detector" in a paper presented at the Royal Society, London. He also later received U.S. Patent 755,840, "Detector for electrical disturbances" (1904), for a specific electromagnetic receiver.

Kabaddi: The game of kabaddi originated in India during prehistory. Suggestions on how it evolved into the modern form range from wrestling exercises, military drills, and collective self-defense but most authorities agree that the game existed in some form or the other in India during the period between 1500 and 400 BCE.

Ludo: Pachisi originated in India by the 6th century. The earliest evidence of this game in India is the depiction of boards on the caves of Ajanta. This game was played by the Mughal emperors of India; a notable example being that of Akbar, who played living Pachisi using girls from his harem. A variant of this game, called Ludo, made its way to England during the British Raj.

Muslin: The fabric was named after the city where Europeans first encountered it, Mosul, in what is now Iraq, but the fabric actually originated from Dhaka in what is now Bangladesh. In the 9th century, an Arab merchant named Sulaiman makes note of the material's origin in Bengal (known as Ruhml in Arabic).

Mysorean rockets: The first iron-cased and metal-cylinder rockets were developed by Tipu Sultan, ruler of the South Indian Kingdom of Mysore, and his father Hyder Ali, in the 1780s. He successfully used these iron-cased rockets against the larger forces of the British East India Company during the Anglo-Mysore Wars. The Mysore rockets of this period were much more advanced than what the British had seen, chiefly because of the use of iron tubes for holding the propellant; this enabled higher thrust and longer range for the missile (up to 2 km range). After Tipu's eventual defeat in the Fourth Anglo-Mysore War and the capture of the Mysore iron rockets, they were influential in British rocket development, inspiring the Congreve rocket, and were soon put into use in the Napoleonic Wars. The Great Stupa at Sanchi (4th-1st century BCE). The dome shaped stupa was used in India as a commemorative monument associated with storing sacred relics.

Palampore: पालमपुर् (Hindi language) of Indian origin was imported to the western world—notable England and Colonial america—from India. In 17th-century England these hand painted cotton fabrics influenced native crewel work design. Shipping vessels from India also took palampore to colonial America, where it was used in quilting.

Prayer flags: The Buddhist sūtras, written on cloth in India, were transmitted to other regions of the world. These sutras, written on banners, were the origin of prayer flags. Legend ascribes the origin of the prayer flag to the Shakyamuni Buddha, whose prayers were written on battle flags used by the devas against their adversaries, the asuras. The legend may have given the Indian bhikku a reason for carrying the 'heavenly' banner as a way of signyfying his commitment to ahimsa. This knowledge was carried into Tibet by 800 CE, and the actual flags were introduced no later than 1040 CE, where they were further modified. The Indian monk Atisha (980-1054 CE) introduced the Indian practice of printing on cloth prayer flags to Tibet.

Prefabricated home and movable structure: The first prefabricated homes and movable structures were invented in 16th-century Mughal India by Akbar. These structures were reported by Arif Qandahari in 1579. Wayang Kulit (shadow puppet) in Wayang Purwa type, depicting five Pandava, from left to right: Bhima, Arjuna, Yudhishtira, Nakula, and Sahadeva (Museum Indonesia, Jakarta). Ghosh, Massey, and Banerjee (2006) trace the origins of puppetry in India to the Indus Civilization.

Ruler: Rulers made from Ivory were in use by the Indus Valley Civilization in what today is Pakistan and some parts of Western India prior to 1500 BCE. Excavations at Lothal (2400 BCE) have yielded one such ruler calibrated to about 1/16 of an inch—less than 2 millimeters. Ian Whitelaw (2007) holds that 'The Mohenjo-Daro ruler is divided into units corresponding to 1.32 inches (33.5 mm) and these are marked out in decimal subdivisions with amazing accuracy—to within 0.005 of an inch. Ancient bricks found throughout the region have dimensions that correspond to these units.' Shigeo Iwata (2008) further writes 'The minimum division of graduation found in the segment of an ivory-made linear measure excavated in Lothal was 1.79 mm (that corresponds to 1/940 of a fathom), while that of the fragment of a shell-made one from Mohenjo-daro was 6.72 mm (1/250 of a fathom), and that of bronze-made one from Harapa was 9.33 mm (1/180 of a fathom).' The weights and measures of the Indus civilization also reached Persia and Central Asia, where they were further modified.

Seamless celestial globe: Considered one of the most remarkable feats in metallurgy, it was invented in Kashmir by Ali Kashmiri ibn Luqman in between 1589 and 1590 CE, and twenty other such globes were later produced in Lahore and Kashmir during the Mughal Empire. Before they were rediscovered in the 1980s, it was believed by modern metallurgists to be technically impossible to produce metal globes without any seams, even with modern technology. These Mughal metallurgists pioneered the method of lost-wax casting in order to produce these globes.

Shampoo: The word shampoo in English is derived from Hindustani chāmpo (चाँपो [tʃãːpoː]), and dates to 1762. The shampoo itself originated in the eastern regions of the Mughal Empire that ruled erstwhile India, particularly in the Nawab of Bengal where it was introduced as a head massage, usually consisting of alkali, natural oils and fragrances. Shampoo was first introduced in Britain by a Bengali entrepreneur from Bihar named Sake Dean Mahomed, he first familiarized the shampoo in Basil Cochrane's vapour baths while working there in the early 19th century. Later, Sake Dean Mahomed together with his Irish wife, opened "Mahomed's Steam and Vapour Sea Water Medicated Baths" in Brighton, England. His baths were like Turkish baths where clients received a treatment of champi (shampooing). Very soon due to Sake Dean Mahomed fame as a bathing expert he was appointed ‘Shampooing Surgeon’ to both George IV and William IV.

Single roller cotton gin: The Ajanta caves of India yield evidence of a single roller cotton gin in use by the 5th century. This cotton gin was used in India until innovations were made in form of foot powered gins. The cotton gin was invented in India as a mechanical device known as charkhi, more technically the "wooden-worm-worked roller". This mechanical device was, in some parts of India, driven by water power.

Snakes and ladders: Snakes and ladders originated in India as a game based on morality. During British rule of India, this game made its way to England, and was eventually introduced in the United States of America by game-pioneer Milton Bradley in 1943.
Stepwell: Earliest clear evidence of the origins of the stepwell is found in the Indus Valley Civilization's archaeological site at Mohenjodaro in Pakistan. The three features of stepwells in the subcontinent are evident from one particular site, abandoned by 2500 BCE, which combines a bathing pool, steps leading down to water, and figures of some religious importance into one structure. The early centuries immediately before the common era saw the Buddhists and the Jains of India adapt the stepwells into their architecture. Both the wells and the form of ritual bathing reached other parts of the world with Buddhism. Rock-cut step wells in the subcontinent date from 200 to 400 CE. Subsequently the wells at Dhank (550-625 CE) and stepped ponds at Bhinmal (850-950 CE) were constructed.

Stupa: The origin of the stupa can be traced to 3rd-century BCE India. It was used as a commemorative monument associated with storing sacred relics. The stupa architecture was adopted in Southeast and East Asia, where it evolved into the pagoda, a Buddhist monument used for enshrining sacred relics.

Suits game: Kridapatram is an early suits game, made of painted rags, invented in Ancient India. The term kridapatram literally means "painted rags for playing." Paper playing cards first appeared in East Asia during the 9th century. The medieval Indian game of ganjifa, or playing cards, is first recorded in the 16th century.

Toe stirrup: The earliest known manifestation of the stirrup, which was a toe loop that held the big toe was used in India in as early as 500 BCE or perhaps by 200 BCE according to other sources. This ancient stirrup consisted of a looped rope for the big toe which was at the bottom of a saddle made of fibre or leather. Such a configuration made it suitable for the warm climate of most of India where people used to ride horses barefoot. A pair of megalithic double bent iron bars with curvature at each end, excavated in Junapani in the central Indian state of Madhya Pradesh have been regarded as stirrups although they could as well be something else. Buddhist carvings in the temples of Sanchi, Mathura and the Bhaja caves dating back between the 1st and 2nd century BCE figure horsemen riding with elaborate saddles with feet slipped under girths. Sir John Marshall described the Sanchi relief as "the earliest example by some five centuries of the use of stirrups in any part of the world". In the 1st century CE horse riders in northern India, where winters are sometimes long and cold, were recorded to have their booted feet attached to hooked stirrups. However the form, the conception of the primitive Indian stirrup spread west and east, gradually evolving into the stirrup of today.

Wootz steel: Wootz originated in India before the beginning of the common era. Wootz steel was widely exported and traded throughout ancient Europe, China, the Arab world, and became particularly famous in the Middle East, where it became known as Damascus steel. Archaeological evidence suggests that this manufacturing process was already in existence in South India well before the Christian era they also made trains what were pulled by horses under ground.

Imagine this is 1979: If you were reading this article back then, chances are you would have read it on paper–with a printed newspaper or magazine in your hands. Today, you are probably reading it on a desktop computer, a laptop (or as a printout from either of these) or perhaps even on your BlackBerry or iPhone. The pace of innovation has been so hectic in recent years that it is hard to imagine which innovations have had the greatest impact on business and society.

Is it possible to determine which 30 innovations have changed life most dramatically during the past 30 years? then  list is as follows, in order of importance:

1. Internet, broadband, www (browser and html)

2. PC/laptop computers

3. Mobile phones

4. E-mail

5. DNA testing and sequencing/human genome mapping

6. Magnetic Resonance Imaging (MRI)

7. Microprocessors

8. Fiber optics

9. Office software (spreadsheets, word processors)

10. Non-invasive laser/robotic surgery (laparoscopy)

11. Open-source software and services (e.g., Linux, Wikipedia)

12. Light-emitting diodes

13. Liquid crystal display (LCD)

14. GPS systems

15. Online shopping/e-commerce/auctions (e.g., eBay)

16. Media file compression (jpeg, mpeg, mp3)

17. Microfinance

18. Photovoltaic solar energy

19. Large- scale wind turbines

20. Social networking via the Internet

21. Graphic user interface (GUI)

22. Digital photography/videography

23. RFID and applications (e.g., EZ Pass)

24. Genetically modified plants

25. Bio fuels

26. Bar codes and scanners

27. ATMs

28. Stents

29. SRAM flash memory

30. Anti-retroviral treatment for AIDS

Post has attachment

Post has attachment

Post has attachment

Post has attachment
Wait while more posts are being loaded