Post has attachment
TESLA DESCRIBES HIS EFFORTS IN VARIOUS FIELDS OF WORK by Nikola Tesla , New York - Nov, 30, 1898
TO THE EDITOR OF THE SUN—Sir: Had it not been for other urgent duties, I would before this have acknowledged your highly appreciative editorial of November 13. Such earnest comments and the frequent evidences of the highest appreciation of my labors by men who are the recognized leaders of this day in scientific speculation, discovery and invention are a powerful stimulus, and I am thankful for them. There is nothing that gives me so much strength and courage as the feeling that those who are competent to judge have faith in me.

Permit me on this occasion to make a few statements which will define my position in the various fields of investigation you have touched upon.

I can not but gratefully acknowledge my indebtedness to earlier workers, as Dr. Hertz and Dr. Lodge, in my efforts to produce a practical and economical lighting system on the lines which I first disclosed in a lecture at Columbia College in 1891. There exists a popular error in regard to this light, inasmuch as it is believed that it can be obtained without generation of heat. The enthusiasm of Dr. Lodge is probably responsible for this error, which I have pointed out early by showing the impossibility of reaching a high vibration without going through the lower or fundamental tones. On purely theoretical grounds such a result is think- able, but it would imply a device for starting the vibrations of unattainable qualities, inasmuch as it would have to be entirely devoid of inertia and other properties of matter. Though I have conceptions in this regard, I dismiss for the present this proposition as being impossible. We can not produce light without heat, but we can surely produce a more efficient light than that obtained in the incandescent lamp, which, though a beautiful invention, is sadly lacking in the feature of efficiency. As the first step toward this realization, I have found it necessary to invent some method for transforming economically the ordinary currents as furnished from the lighting circuits into electrical vibrations of great rapidity. This was a difficult problem, and it was only recently that I was able to announce its practical and thoroughly satisfactory solution. But this was not the only requirement in a system of this kind. It was necessary also to increase the intensity of the light, which at first was very feeble. In this direction, too, I met with complete success, so that at present I am producing a thoroughly service- able and economical light of any desired intensity. I do not mean to say that this system will revolutionize those in use at present, which have resulted from the co-operation of many able men. I am only sure that it will have its fields of usefulness.
As to the idea of rendering the energy of the sun available for industrial purposes, it fascinated me early but I must admit it was only long after I discovered the rotating magnetic field that it took a firm hold upon my mind. In assailing the problem I found two possible ways of solving it. Either power was to be developed on the spot by converting the energy of the sun's radiations or the energy of vast reservoirs was to be transmitted economically to any distance. Though there were other possible sources of economical power, only the two solutions mentioned offer the ideal feature of power being obtained without any consumption of material. After long thought I finally arrived at two solutions, but on the first of these, namely, that referring to the development of power in any locality from the sun's radiations, I can not dwell at present. The system of power transmission without wires, in the form in which I have described it recently, originated in this manner. Starting from two facts that the earth was a conductor insulated in space, and that a body can not be charged without causing an equivalent displacement of electricity in the earth, I undertook to construct a machine suited for creating as large a displacement as possible of the earth's electricity.

This machine was simply to charge and discharge in rapid succession a body insulated in space, thus altering periodically the amount of electricity in the earth, and consequently the pressure all over its surface. It was nothing but what in mechanics is a pump, forcing water from a large reservoir into a small one and back again. Primarily I contemplated only the sending of messages to great distances in this manner, and I described the scheme in detail, pointing out on that occasion the importance of ascertaining certain electrical conditions of the earth. The attractive feature of this plan was that the intensity of the signals should diminish very little with the distance, and, in fact, should not diminish at all, if it were not for certain losses occurring, chiefly in the atmosphere. As all my previous ideas, this one, too, received the treatment of Marsyas, but it forms, nevertheless, the basis of what is now known as —wireless telegraphy.— This statement will bear rigorous examination, but it is not made with the intent of detracting from the merit of others. On the contrary, it is with great pleasure that I acknowledge the early work of Dr. Lodge, the brilliant experiments of Marconi, and of a later experimenter in this line, Dr. Slaby, of Berlin. Now, this idea I extended to a system of power transmission, and I submitted it to Helmholtz on the occasion of his visit to this country. He unhesitatingly said that power could certainly be transmitted in this manner, but he doubted that I could ever produce an apparatus capable of creating the high pressures of a number of million volts, which were required to attack the problem with any chance of success, and that I could overcome the difficulties of insulation. Impossible as this problem seemed at first, I was fortunate to master it in a comparatively short time, and it was in perfecting this apparatus that I came to a turning point in the development of this idea. I, namely, at once observed that the air, which is a perfect insulator for currents produced by ordinary apparatus, was easily traversed by currents furnished by my improved machine, giving a tension of something like 2,500,000 volts. A further investigation in this direction led to another valuable fact; namely, that the conductivity of the air for these currents increased very rapidly with its degree of rarefaction, and at once the transmission of energy through the upper strata of air, which, without such results as I have obtained, would be nothing more than a dream, became easily realizable. This appears all the more certain, as I found it quite practicable to transmit, under conditions such as exist in heights well explored, electrical energy in large amounts. I have thus overcome all the chief obstacles which originally stood in the way, and the success of my system now rests merely on engineering skill.

Referring to my latest invention, I wish to bring out a point which has been overlooked. I arrived, as has been stated, at the idea through entirely abstract speculations on the human organism, which I conceived to be a self-propelling machine, the motions of which are governed by impressions received through the eye. Endeavoring to construct a mechanical model resembling in its essential, material features the human body, I was led to combine a controlling device, or organ sensitive to certain waves, with a body provided with propelling and directing mechanism, and the rest naturally followed. Originally the idea interested me only from the scientific point of view, but soon I saw that I had made a departure which sooner or later must produce a profound change in things and conditions presently existing. I hope this change will be for the good only, for, if it were otherwise, I wish that I had never made the invention. The future may or may not bear out my present convictions, but I can not refrain from saying that it is difficult for me to see at present how, with such a principle brought to great perfection, as it undoubtedly will be in the course of time, guns can maintain themselves as weapons. We shall be able, by availing ourselves of this advance, to send a projectile at much greater distance, it will not be limited in any way by weight or amount of explosive charge, we shall be able to submerge it at command, to arrest it in its flight, and call it back, and to send it out again and explode it at will, and, more than this, it will never make a miss, since all chance in this regard, if hitting the object of attack were at all required, is eliminated. But the chief feature of such a weapon is still to be told; namely, it may be made to respond only to a certain note or tune, it may be endowed with selective power. Directly such an arm is produced, it becomes almost impossible to meet it with a corresponding development. It is this feature, perhaps, more than in its power of destruction, that its tendency to arrest the development of arms and to stop warfare will reside. With renewed thanks, I remain,
source http://www.tfcbooks.com/tesla/1898-11-30.htm


Photo

Post has attachment
Photo

Post has attachment

Post has attachment
NIkola Tesla's Vision
Free Energy
Surrealism Scott Leary

Photo

Post has attachment
PhotoPhotoPhotoPhotoPhoto
9/1/17
5 Photos - View album

Post has attachment

Post has attachment
I'm blue

Post has attachment
#Telautomatics , #NikolaTesla - Principles and concepts of Telautomtics Nikola Tesla:
"Long ago I conceived the idea of constructing an automaton which would mechanically represent me, and which would respond, as I do myself, but of course, in a much more primitive manner to external influences. Such an automaton evidently had to have motive power, organs for locomotion, directive organs and one or more sensitive organs so adapted as to be excited by external stimuli.... Whether the automaton be of flesh and bone, or of wood and steel, it mattered little, provided it could provide all the duties required of it like an intelligent being."
My telautomaton, for instance, opens up a new art which will sooner or later render large guns entirely useless, and will make impossible the building of large battleships, and will... compel the nations to come to an understanding for the maintenance of peace."
> Tesla patent US613,809 - Method of and Apparatus for Controlling Mechanism of Moving Vessels or Vehicles - Filed 1 July 1898, granted 8 Nov. 1898, describes the first device anywhere for wireless remote control. In September, 1898 he operated a three-foot model boat demonstrating both radio control and robotry in one incredible presentation before the public at Madison Square Garden in Ney York City, as part of the first annual Electrical Exhibition.
His working model or "telautomaton" responded to signals only of one frequency. This scaled down ship used a device called "coherer" as a sensitive device to recieve radio signals.
Incoming radio signals were just strong enough to rely the metal oxided granules (d) because of the presence of a magnetic field and they would draw together into a configuration where they could conduct electricity and trigger the motor or rudder. To reset the detector, a motor would flip the detector end-over-end like an hourglass. With a signal applied from a reception antenna, the powder grains suddenly "cohere" and the circuit is completed.

Many of his coherers utilized a small hammer-like device to tap the tube after each signal, breaking up the filings and increasing the resistance in preparation for the next signal. A number of ingenious mechanisms such as shakers were developed for decoherence.

The boat was powered by large batteries inside its hull. Only the instructions came by radio.
Near the bow and stern were two small metal tubes about a foot high surmounted by small electric lamps. The interior of the hull was packed with a radio receiving set and a variety of motor-driven mechanisms which put into effect the operating orders sent to the boat by wireless waves. There was a motor for propelling the boat and another motor for operating the servo-mechanism, or mechanical brain, that interpreted the orders coming from the wireless receiving set and translated them into mechanical motions, which included steering the boat in any direction, making it stop, start, go forward or backward, or light either lamp. The boat could thus be put through the most complicated maneuvers.
To preform numerous functions, Tesla had geared mechanism shift a disk with many sets of electrical contacts laid out on it. Each advance of the slit into place a different combination of connections for the operating state of rudder, motor and lighting. The operator had to be versed in the switching sequence, advancing the contact disk by the right number of transmission to control the craft's steering, propulsion and lighting.

Tesla did not limit his method to boats, but generalized the invention's potential to include vehicles of any sort and mechanisms acruated for any prupose. He envisioned one operator or several simultanously directing fifty or hundred vessels or machines through different tunned radio transmitters and recievers.

read more : https://teslaresearch.jimdo.com/telautomatics-nov-8-1898/





Post has shared content
Binghamton University _Researchers have created a
bacteria-powered battery on a single sheet of paper that can power disposable electronics_. 
Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics.
Instead of ordering batteries by the pack, we might get them by the ream in the future. Researchers at Binghamton University, State University of New York have created a bacteria-powered battery on a single sheet of paper that can power disposable electronics. The manufacturing technique reduces fabrication time and cost, and the design could revolutionize the use of bio-batteries as a power source in remote, dangerous and resource-limited areas.

"Papertronics have recently emerged as a simple and low-cost way to power disposable point-of-care diagnostic sensors," said Assistant Professor Seokheun "Sean" Choi, who is in the Electrical and Computer Engineering Department within the Thomas J. Watson School of Engineering and Applied Science. He is also the director of the Bioelectronics and Microsystems Lab at Binghamton.

"Stand-alone and self-sustained, paper-based, point-of-care devices are essential to providing effective and life-saving treatments in resource-limited settings," said Choi.

On one half of a piece of chromatography paper, Choi and PhD candidate Yang Gao, who is a co-author of the paper, placed a ribbon of silver nitrate underneath a thin layer of wax to create a cathode. The pair then made a reservoir out of a conductive polymer on the other half of the paper, which acted as the anode. Once properly folded and a few drops of bacteria-filled liquid are added, the microbes' cellular respiration powers the battery.

"The device requires layers to include components, such as the anode, cathode and PEM (proton exchange membrane)," said Choi. "[The final battery] demands manual assembly, and there are potential issues such as misalignment of paper layers and vertical discontinuity between layers, which ultimately decrease power generation."

Different folding and stacking methods can significantly improve power and current outputs. Scientists were able to generate 31.51 microwatts at 125.53 microamps with six batteries in three parallel series and 44.85 microwatts at 105.89 microamps in a 6x6 configuration.

It would take millions of paper batteries to power a common 40-watt light bulb, but on the battlefield or in a disaster situation, usability and portability is paramount. Plus, there is enough power to run biosensors that monitor glucose levels in diabetes patients, detect pathogens in a body or perform other life-saving functions.

"Among many flexible and integrative paper-based batteries with a large upside, paper-based microbial fuel cell technology is arguably the most underdeveloped," said Choi. "We are excited about this because microorganisms can harvest electrical power from any type of biodegradable source, like wastewater, that is readily available. I believe this type of paper biobattery can be a future power source for papertronics."

The innovation is the latest step in paper battery development by Choi. His team developed its first paper prototype in 2015, which was a foldable battery that looked much like a matchbook. Earlier this year they unveiled a design that was inspired by a ninja throwing star.
source https://www.sciencedaily.com/releases/2016/12/161221110606.htm



Post has attachment
Long live Nikola!
Wait while more posts are being loaded