Finite Element Embedded Library and Language in C++
See all
Members (37)

Stream

 
New simulation/presentation for the tomography project.

This simulation shows the propagation of the light though a turbid medium (2 inclusions) for 16 different IR sources located around the object.

Enjoy!
5
Add a comment...
 
Feel++ has now its own YouTube channel

https://www.youtube.com/channel/UCnLX6kyV8j644isqhMpUN4Q

About 40 videos are now online. Enjoy!

You can subscribe to the channel to receive notifications when new videos are uploaded.
1
Add a comment...
 
Aerothermal simulation in an airplane cabin using Feel++ (Courtesy of JB Wahl and P Gerhard)
7
1
Christophe Prud'homme's profile photovincent doyeux's profile photoGuillaume DOLLÉ's profile photo
2 comments
 
Super simulation !
Add a comment...

vincent doyeux

Discussion  - 
 
Simulation of vesicles at a bifurcation. The curvature force is negligible making the vesicles easy to deform.  

http://youtu.be/Fdb39nQL8QQ
2
Add a comment...

vincent doyeux

Discussion  - 
 
First simulation on SUPERMUC for level set application :
8 bubbles of different fluids rising in a 9th one
8 level set are needed for this simulation
10 cores, 187226 dof for navier-stokes problem, few hours for the total simulation
1
vincent doyeux's profile photo
 
Two level set fields are shown here.
http://youtu.be/WqtrH__SqHk
Add a comment...

Mourad Ismail

Discussion  - 
1
Christophe Prud'homme's profile photoMourad Ismail's profile photo
2 comments
 
I agree with you. For example we are not obliged to assemble matrices at each time step, at least part of them
Add a comment...
 
Simulation FSI dans un tube.
Les conditions aux limites en sortie ne sont pas bien adapté (sigma n =0 et eta=0). On voit apparaitre de forte reflexion.

||==============================================||
||----------Info : FluidMechanics---------------||
||==============================================||
   Prefix : fluid
   Appli Repository : /home/ciment/chabannes/feel/applications/fsi/wavepressure3d/straightpipe/P2P1Geo1-P1Geo1/NavierStokes/HyperElastCompStVenantKirchhoff/ImplicitWithCIPStab/np_16/
   Physical Model
     -- pde name  : Navier-Stokes
     -- stress tensor law  : newtonian
     -- time mode : Transient
     -- ale mode  : Yes
   Physical Parameters
     -- rho : 1
     -- mu  : 0.03
     -- nu  : 0.03
   Space Discretization
     -- msh file name   : /home/ciment/chabannes/Mesh-straightpipe/wavepressure3dfluidmesh-Simplex_3_2_3_p16.msh
     -- nb elt in mesh  : 
     -- nb face in mesh : 3268
     -- geometry order  : 1
     -- velocity order  : 2
     -- pressure order  : 1
     -- nb dof          : 69836 (velocity+pressure)
     -- nb dof velocity : 66516
     -- nb dof pressure : 3320
     -- stabilisation  : CIP convection
   Time Discretization
     -- initial time : 0
     -- final time   : 0.05
     -- time step    : 0.0001
     -- order        : 2
     -- restart mode : Yes
   Numerical Solver
     -- solver : Newton
   Exporter
     -- type            : ensight
     -- high order visu : ON (with OperatorLagrangeP1)
   Processors
     -- number of proc environnement : 16
     -- environement rank : 0
     -- global rank : 0
     -- local rank : 0
||==============================================||
||==============================================||
||----------Info : SolidMechanics---------------||
||==============================================||
   Prefix : struct
   Appli Repository : /home/ciment/chabannes/feel/applications/fsi/wavepressure3d/straightpipe/P2P1Geo1-P1Geo1/NavierStokes/HyperElastCompStVenantKirchhoff/ImplicitWithCIPStab/np_16/
   Physical Model
     -- pde name : Hyper-Elasticity
     -- material law : StVenantKirchhoff
     -- incompressibility : No
     -- time mode : Transient
   Physical Parameters
     -- rho : 1.2
     -- young modulus : 3e+06
     -- coeff poisson : 0.3
   Space Discretization
     -- msh file name   : /home/ciment/chabannes/Mesh-straightpipe/wavepressure3dwallmesh-Simplex_3_2_3_p16.msh
     -- nb elt in mesh : ?
     -- nb dof : 12876
     -- order : 1
   Time Discretization
     -- initial time : 0
     -- final time : 0.05
     -- time step : 0.0001
     -- type : Newmark
     -- restart mode : Yes
   Numerical Solver
     -- solver : Newton
   Processors
     -- number of proc environnement : 16
     -- environement rank : 0
     -- global rank : 0
     -- local rank : 0
||==============================================||
||==============================================||
||-----------------Info : FSI-------------------||
||==============================================||
   Coupling type : Implicit
   Interface property : conformal
   Fix point parameters
     -- methode : Aitken
     -- tolerance  : 1e-05
     -- initial theta  : 0.1
     -- min theta  : 0.0001
||==============================================||
1
Add a comment...

vincent doyeux

Discussion  - 
 
Soft vesicle entering in the higher flow rate branch of a bifurcation. It is initially at the center of a Poiseuille flow, having the caracteristic "parachute" shape and finishing in the lower part of the subbranch as "slipper" shape
2
Add a comment...

Christophe Prud'homme
owner

Discussion  - 
 
Feel++ has been selected for the MesoChallenge in Strasbourg. We have proposed a project associated to our work on blood flow and blood flow rheology and we should have full access to the new equip@meso NEC machine. More information soon.
1
Add a comment...
 
Simulation FSI de l'aorte.
Le maillage est encore grossier.
Les modèles physiques sont les plus simples : Oseen et élasticité linéaire.
Les conditions en sortie pour le fluide : modele 0d (Windkessel model)
Condition de robin pour la paroi arterielle externe.
Couplage FSI semi-implicite.
Grâce à ces conditions plus réaliste, la reflexion des ondes de pression est  réduite.
 ·  Translate
4
Add a comment...

Christophe Prud'homme
owner

Science & Technology  - 
 
GitHub now allows to add a DOI to our software and have it citable !
this will done very soon for Feel++
https://github.com/blog/1840-improving-github-for-science
GitHub is great !
GitHub is being used today to build scientific software that's helping find Earth-like planets in other solar systems, analyze DNA, and build open source rockets. Seeing these projects and all this momentum within academia has pushed us to think about how we can make GitHub a better tool for research. As scientific experiments become more complex and their datasets grow, researchers are spending more of their time writing tools and software to a...
1
Add a comment...
 
Feel++ is now on twitter
1
Add a comment...
 
A first aerothermal simulation in a computer room using Feel++ courtesy of JB Wahl and P Gerhard. Enjoy!
2
1
Christophe Prud'homme's profile photo
Add a comment...
 
anyone used CodeBlocks to Build Feel++ ?
1
Christophe Prud'homme's profile photoErrazi BEN AHMED's profile photo
5 comments
 
Dear Errazi,
 Could you send this kind of questions on the feelpp-user@feelpp.org mailing list 

you can register here
https://groups.google.com/a/feelpp.org/forum/#!forumsearch/

There is also GitHub to report issues
https://github.com/feelpp/feelpp/issues?milestone=2&state=open

Try to provide as much information as possible: compiler, version of libraries/software, operating system.

CodeBlocks is just an editor it won't fix the kind of issue you have

Thanks in advance
Add a comment...
 
vers le benchmark FSI3 avec la FBM :
Oseen pour le fluide, HyperElastique incompressible pour la structure
Couplage FSI semi-implicite.
 ·  Translate
3
Jaroslav Hron's profile photoMourad Ismail's profile photo
3 comments
 
Really good job - may be you could improve the reference lift and drag values of this benchmark...
Add a comment...
 
It is my pleasure to announce that HP-Feel++ (High Performance Feel++) has
been awarded 60 000 000 core hours on SUPERMUC (GAUSS@LRZ,Germany)[1] by the
PRACE 6th regular call [2]. Among 88 projects submitted, 57 have been
selected. HP-Feel++ has received fully the requested core hours.

 1. http://www.lrz.de/services/compute/supermuc/  2. http://www.prace-ri.eu/

The press release of PRACE is available here
http://www.prace-ri.eu/IMG/pdf/2013-02-28_call_6_allocations_final.pdf 

HP-Feel++ is a collaboration between U. of Strasbourg(France), U. Joseph Fourier(Grenoble, France), CNRS, U. of Pierre et Maris Curie (Paris) and U. Coimbra(Portugal).

The HP-Feel++ project aims at developing two research applications that
require now access of TIER-0 computing resources: blood flow rheology and high field magnets.

Although these domains are quite different they have been thoroughly developed for the past few years within the Feel++ project (http://www.feelpp.org). They share the same mathematical kernel that encompasses a large range of numerical methods to solve partial differential equations such as (i) arbitrary order continuous and discontinuous Galerkin methods in 1D, 2D and 3D, (ii) domain decomposition methods, (iii) fictitious domain methods, (iv) level-set methods or (iv) certified reduced basis methods.  These methods are developed and used easily using a domain specific language embedded in C++ mimicking the mathematical language associated to Galerkin methods. This language allows physicists, engineers and mathematicians to focus on the numerical methods as well the physics whilst it hides the computer science details (e.g. parallelism) or algebraic solvers and enables the user to ramp up very quickly from rapid prototyping numerical methods to large scale computations. Within this context, blood flow rheology and high field magnets are the two domains driving Feel++ developments.

In blood flow rheology, we are interested in simulating suspensions of red blood cells (RBC) in arteries and veins and in studying the fluid properties (i.e. the fluid apparent viscosity) either in healthy contexts (our current focus) or pathological contexts (in the longer term). Not only the RBC are deformable entities, arteries and veins deform also during blood pulse; in both cases fluid structure interaction modeling and simulations are required. We have developed two main alternatives to tackle these problems: (i) fluid structure interaction within the so-called Arbitrary Lagrangian Eulerian framework coupled with a fictitious domain method to handle the RBC and (ii) fluid structure interaction using level-set methods. In both cases, the computational and storage costs for realistic simulations require using the TIER-0 infrastructures.

As to high field magnets (i.e. magnetic intensity greater than 24T), they are being developed by a large scale equipment laboratory (Laboratoire national des champs magnetiques intenses) and they are accessible to the international scientific community through project calls. Studies range from solid physics to applied supra-conductivity and magneto-science. The design and optimisation of these high field magnets require the solution of large scale multi-physics (and mildly multi-scale) non-linear partial differential equations. Moreover to ensure a robust design, we need to assess uncertainties through quantile estimations and sensitivity analysis. The latter is built on the former as it requires hundred or thousands evaluations of the former. We have developed the so-called certified reduced basis in this context to reduce the computational cost within the uncertainty quantification and optimisation processes from millions of degrees of freedom to a few tens or hundreds. This huge computational gain requires however the acceptance of an intensive offline stage allowing to get the independence with respect to the costly (typically finite element) underlying models and which demands now the access to TIER-0 infrastructures.
2
1
Christophe Prud'homme's profile photo
Add a comment...
 
Simulation FSI dans un tube.
Les conditions aux limites sont plus réaliste.
Fluide : Oseen  P3P2G2 
Structure : Elasticité Lineaire P2G2
Couplage FSI : semi-implicite.
Temps de calcul : environ 10h sur 5 proc

|==============================================||
||----------Info : FluidMechanics---------------||
||==============================================||
   Prefix : fluid
   Appli Repository : /home/chabanne/feel/applications/fsi/wavepressure3d/straightpipe/P3P2Geo2-P2Geo2/Oseen/ElastLinear/Semi-Implicit-Outlet0d-robin/np_5/
   Physical Model
     -- pde name  : Oseen
     -- stress tensor law  : newtonian
     -- time mode : Transient
     -- ale mode  : Yes
   Physical Parameters
     -- rho : 1
     -- mu  : 0.03
     -- nu  : 0.03
   Space Discretization
     -- msh file name   : /home/chabanne/feel/applications/fsi/wavepressure3d/straightpipe/P3P2Geo2-P2Geo2/Oseen/ElastLinear/Semi-Implicit-Outlet0d-robin/np_5//fluid.msh
     -- nb elt in mesh  : 
     -- nb face in mesh : 
     -- geometry order  : 2
     -- velocity order  : 3
     -- pressure order  : 2
     -- nb dof          : 30744 (velocity+pressure)
     -- nb dof velocity : 27690
     -- nb dof pressure : 3054
     -- stabilisation  : OFF
   Time Discretization
     -- initial time : 0
     -- final time   : 0.05
     -- time step    : 0.0001
     -- order        : 2
     -- restart mode : No
   Numerical Solver
     -- solver : LinearSystem
   Exporter
     -- type            : ensight
     -- high order visu : ON (with OperatorLagrangeP1)
   Processors
     -- number of proc environnement : 5
     -- environement rank : 0
     -- global rank : 0
     -- local rank : 0
||==============================================||
||==============================================||
||----------Info : SolidMechanics---------------||
||==============================================||
   Prefix : struct
   Appli Repository : /home/chabanne/feel/applications/fsi/wavepressure3d/straightpipe/P3P2Geo2-P2Geo2/Oseen/ElastLinear/Semi-Implicit-Outlet0d-robin/np_5/
   Physical Model
     -- pde name : Elasticity
     -- material law : StVenantKirchhoff
     -- incompressibility : No
     -- time mode : Transient
   Physical Parameters
     -- rho : 1.2
     -- young modulus : 3e+06
     -- coeff poisson : 0.3
   Space Discretization
     -- msh file name   : /home/chabanne/feel/applications/fsi/wavepressure3d/straightpipe/P3P2Geo2-P2Geo2/Oseen/ElastLinear/Semi-Implicit-Outlet0d-robin/np_5//struct.msh
     -- nb elt in mesh : 
     -- nb dof : 19878
     -- order : 2
   Time Discretization
     -- initial time : 0
     -- final time : 0.05
     -- time step : 0.0001
     -- type : Newmark
     -- restart mode : No
   Numerical Solver
     -- solver : LinearSystem
   Processors
     -- number of proc environnement : 5
     -- environement rank : 0
     -- global rank : 0
     -- local rank : 0
||==============================================||
||==============================================||
||-----------------Info : FSI-------------------||
||==============================================||
   Coupling type : Semi-Implicit
   Interface property : conformal
   Fix point parameters
     -- methode : Aitken
     -- tolerance  : 1e-05
     -- initial theta  : 0.1
     -- min theta  : 0.0001
||==============================================||
1
Add a comment...

vincent doyeux

Discussion  - 
 
Suspension of 19 vesicles in a shear flow.
2
Add a comment...
 
Thanks to Olivier Genevaux (U. Strasbourg) and the very nice tools provided by vmtk and Gmsh we have now a FSI mesh for the cerebrovenous system.
See screenshots. You can see both the lumen and venous wall (in yellow) generated by gmsh using the centerlines generated by vmtk.
3
Add a comment...