Post has attachment

Post has attachment
This is a hexacosihedron (600 faces). It was constructed with 3 kinds of different tetrahedra: 1,260-a + 912-b + 288-c [I constructed it on 15 Feb, 2012 at 19:40, the last in a long afternoon...] (lol)
Symmetry is Th (tetrahedral complete w. horiz. reflection)
Please be happy, you all!
Animated Photo

Post has attachment

Post has attachment
Seashell 02 (parametric surface)
It's unlikely to find such seashell in nature but...who cares? :-)
The attached script shows a way to fine-tune the protuberances distribution over each different shell shape (see the "th" function definition)
MathMod script:
{
"Param3D": {
"Description ": ["Seashell by Abderrahman Taha 19/04/2017"],
"Name": ["Sea Shells_003"],
"Component": ["Sea Shell"],
"Const": ["cu=0.001",
"cv=0.001",
"N=14",
"M=4",
"MaxU=pi",
"MinU=0",
"MaxV=5*pi/2",
"MinV=0",
"a=0.2",
"b=1",
"c=0.1",
"n=2"],
"Funct": [" th = 0.1* ( ( 1 - abs ( u-pi/2 ) / MaxU )
( v / MaxV + 0.05 ) * abs ( cos ( N * (u ) ) ^ 3 - sin ( N * ( v)) ^2 ) ) ^ 3",
" Fx = if ( M=1,2(1-exp(u/(6*pi)))cos(u)*cos(v/2)^2,if(M=2,((a(1-v/(2*pi))(1+cos(u))+c)*cos(n*v))*6+4,if(M=3,2^v(sin(u)cos(u))/35,if( M=4,1.2^v(sin(u)^2*sin(v))+2,2*(1-exp(u/(6*pi)))cos(u)*cos(v/2)^2))))",
" Fy = if ( M=1,2(-1+exp(u/(6*pi)))sin(u)*cos(v/2)^2,if(M=2,((a(1-v/(2*pi))(1+cos(u))+c)*sin(n*v))*6+4,if(M=3,2^v(sin(u)^2*sin(v))/35-4,if(M=4,1.2^v*(sin(u)cos(u))+5,2(-1+exp(u/(6*pi)))sin(u)*cos(v/2)^2))))",
" Fz = if ( M=1,1-exp(u/(3*pi))-sin(v)+exp(u/(6*pi))*sin(v),if(M=2,(b*v/(2*pi)+a(1-v/(2*pi))sin(u))*6-6,if(M=3,2^v(sin(u)^2*cos(v))/35-12,if(M=4,1.2^v*(sin(u)^2*cos(v)) -12,1-exp(u/(3*pi))-sin(v)+exp(u/(6*pi))*sin(v)))))",
"DFxu=((Fx(u,v,t)-Fx(u+cu,v,t))/cu)",
"DFxv=((Fx(u,v,t)-Fx(u,v+cv,t))/cv)",
"DFyu=((Fy(u,v,t)-Fy(u+cu,v,t))/cu)",
"DFyv=((Fy(u,v,t)-Fy(u,v+cv,t))/cv)",
"DFzu=((Fz(u,v,t)-Fz(u+cu,v,t))/cu)",
"DFzv=((Fz(u,v,t)-Fz(u,v+cv,t))/cv)",
"n1=(DFyu(u,v,t)*DFzv(u,v,t)-DFzu(u,v,t)*DFyv(u,v,t))",
"n2=(DFzu(u,v,t)*DFxv(u,v,t)-DFxu(u,v,t)*DFzv(u,v,t))",
"n3=(DFxu(u,v,t)*DFyv(u,v,t)-DFyu(u,v,t)*DFxv(u,v,t))",
"Rapp=u/sqrt(u*u+v*v+t*t)",
"Fx=Fx(u,v,t)+th(u,v-3*t,t)*Rapp(n1(u,v,t),n2(u,v,t),n3(u,v,t))",
"Fy=Fy(u,v,t)+th(u,v-3*t,t)*Rapp(n2(u,v,t),n1(u,v,t),n3(u,v,t))",
"Fz=Fz(u,v,t)+th(u,v-3*t,t)*Rapp(n3(u,v,t),n1(u,v,t),n2(u,v,t))"],
"Fx": ["Fx(u,v,t)"],
"Fy": ["Fy(u,v,t)"],
"Fz": ["Fz(u,v,t)"],
"Umax": ["MaxU"],
"Umin": ["MinU"],
"Vmax": ["MaxV"],
"Vmin": ["MinV"]
}
}
PhotoPhotoPhotoPhoto
19/04/2017
4 Photos - View album

Post has attachment
This little solid (fig 1) is a space-filler: it is formed of 12 tetrakaidecahedra plus 8 non regular dodecahedra (in red), both the h14 & the h12 appearing in the celebrated Weaire-Phelan structure which I posted here some time ago.
Please compare this with this other solid (fig. 2) composed of 24 tetrakaidecahedra & 9 non regular dodecahedra (the dodecs are in red & there is one at the center). This is the celebrated Clathrate type I (that I also posted in this bunch some time ago)
The symmetry of both solids is Th (tetrahedral complete w. horiz reflection)
Please be well, everyone & enjoy springtime (in your lives!..)
Animated Photo
Animated Photo
4/18/17
2 Photos - View album

Post has attachment
Fly through a cubic fractal (the "Menger sponge") and watch it split apart.

Post has attachment
Photo

Post has attachment
Photo

Post has attachment
Seashell (parametric surface)
Looking for a more realistic Seashell model by using trigonometric expressions for the protuberance.
MathMod script:
{
"Param3D": {
"Description ": ["SeaShell by Abderrahman Taha 16/04/2017"],
"Name": ["SeaShell_001"],
"Component": ["SeaShell"],
"Const": ["cu=0.001",
"cv=0.001",
"N=5",
"M=3",
"MaxU=6*pi",
"MinU=0",
"MaxV=2*pi",
"MinV=0",
"a=0.2",
"b=1",
"c=0.1",
"n=2"],
"Funct": ["th=-(((u)/MaxU+0.05 ) * 0.4*abs(cos(7*(u))^3 - sin(7*(v))^2 ))^3",
"Fx=2*(1-exp(u/(6*pi))) * cos(u) * cos(v/2)^2",
"Fy=2*(-1+exp(u/(6*pi))) * sin(u) * cos(v/2)^2",
"Fz=1-exp(u/(3*pi))-sin(v)+exp(u/(6*pi)) *sin(v)",
"DFxu=((Fx(u,v,t)-Fx(u+cu,v,t))/cu)",
"DFxv=((Fx(u,v,t)-Fx(u,v+cv,t))/cv)",
"DFyu=((Fy(u,v,t)-Fy(u+cu,v,t))/cu)",
"DFyv=((Fy(u,v,t)-Fy(u,v+cv,t))/cv)",
"DFzu=((Fz(u,v,t)-Fz(u+cu,v,t))/cu)",
"DFzv=((Fz(u,v,t)-Fz(u,v+cv,t))/cv)",
"n1=(DFyu(u,v,t)*DFzv(u,v,t)-DFzu(u,v,t)*DFyv(u,v,t))",
"n2=(DFzu(u,v,t)*DFxv(u,v,t)-DFxu(u,v,t)*DFzv(u,v,t))",
"n3=(DFxu(u,v,t)*DFyv(u,v,t)-DFyu(u,v,t)*DFxv(u,v,t))",
"Rapp=u/sqrt(u*u+v*v+t*t)",
"Fx=Fx(u,v,t)+th(u,v-3*t,t)*Rapp(n1(u,v,t),n2(u,v,t),n3(u,v,t))",
"Fy=Fy(u,v,t)+th(u,v-3*t,t)*Rapp(n2(u,v,t),n1(u,v,t),n3(u,v,t))",
"Fz=Fz(u,v,t)+th(u,v-3*t,t)*Rapp(n3(u,v,t),n1(u,v,t),n2(u,v,t))"],
"Fx": ["-Fx(u,v,t)"],
"Fy": ["Fy(u,v,t)"],
"Fz": ["Fz(u,v,t)"],
"Umax": ["MaxU"],
"Umin": ["MinU"],
"Vmax": ["MaxV"],
"Vmin": ["MinV"]
}
}
PhotoPhotoPhoto
16/04/2017
3 Photos - View album

Post has attachment
Wait while more posts are being loaded