Profile cover photo
Profile photo
Amiya Behera
Explore, Learn and Create
Explore, Learn and Create
About
Amiya's posts

Post has attachment

Post has attachment

Post has attachment

Post has attachment

Post has attachment

Post has attachment

Post has attachment

Post has attachment
Nivaldo J Tro, treats -ve charge as greater potential energy, while other books treat hypothetical positive charge as greater potential energy, I say it's hypothetical because deficiency of electrons leads to positive charge.

But Paul Hewitt treats potential energy and electric potential as different. They require two charges to describe.
It only says charge flows when there is a potential difference.


How do we know electrons and protons are opposite. Can we concentrate the number of protons keeping the number of electrons same, to make it a positive charge? What is opposite? Mirror images are opposite?

protons and electrons attract each other, but can't stay together, protons protons repel each other but they stay together.

Doesn't it seems everything is same, just at one places things are getting concentrated, and other places, things are reducing, so opposite.

Here is a link discussing opposite
https://plus.google.com/+BrianKoberlein/posts/PomWnqCPK7V


Photo
Photo
2/8/17
2 Photos - View album

Post has attachment
Nivaldo J Tro, treats -ve charge as greater potential energy, while other books treat hypothetical positive charge as greater potential energy, I say it's hypothetical because deficiency of electrons leads to positive charge.

But Paul Hewitt treats potential energy and electric potential as different. They require two charges to describe.
It only says charge flows when there is a potential difference.


How do we know electrons and protons are opposite. Can we concentrate the number of protons keeping the number of electrons same, to make it a positive charge? What is opposite? Mirror images are opposite?

protons and electrons attract each other, but can't stay together, protons protons repel each other but they stay together.

Doesn't it seems everything is same, just at one places things are getting concentrated, and other places, things are reducing, so opposite.

Here is a link discussing opposite
https://plus.google.com/+BrianKoberlein/posts/PomWnqCPK7V

Also WHAT TO WRITE IN EXAMS?
Photo
Photo
2/8/17
2 Photos - View album

Post has shared content
Antimatter Astronomy

In astronomy we study distant galaxies by the light they emit. Just as the stars of a galaxy glow bright from the heat of their fusing cores, so too does much of the gas and dust at different wavelengths. The pattern of wavelengths we observe tells us much about a galaxy, because atoms and molecules emit specific patterns of light. Their optical fingerprint tells us the chemical composition of stars and galaxies, among other things. It’s generally thought that distant galaxies are made of matter, just like our own solar system, but recently it’s been demonstrated that anti-hydrogen emits the same type of light as regular hydrogen. In principle, a galaxy of antimatter would emit the same type of light as a similar galaxy of matter, so how do we know that a distant galaxy really is made of matter?

The basic difference between matter and antimatter is charge. Atoms of matter are made of positively charged nuclei surrounded by negatively charged electrons, while antimatter consists of negatively charged nuclei surrounded by positively charged positrons (anti-electrons). In all of our interactions, both in the lab and when we’ve sent probes to other planets, things are made of matter. So we can assume that most of the things we see in the Universe are also made of matter.

However, when we create matter from energy in the lab, it is always produced in pairs. We can, for example, create protons in a particle accelerator, but we also create an equal amount of anti-protons. This is due to a symmetry between matter and antimatter, and it leads to a problem in cosmology. In the early Universe, when the intense energy of the big bang produced matter, did it also produce an equal amount of antimatter? If so, why do we see a Universe that’s dominated by matter? The most common explanation is that there is a subtle difference between matter and antimatter. This difference wouldn’t normally be noticed, but on a cosmic scale it means the big bang produced more matter than antimatter.

But suppose the Universe does have an equal amount of matter and antimatter, but early on the two were clumped into different regions. While our corner of the Universe is dominated by matter, perhaps there are distant galaxies or clusters of galaxies that are dominated by antimatter. Since the spectrum of light from matter and antimatter is the same, a distant antimatter galaxy would look the same to us as if it were made of matter. Since we can’t travel to distant galaxies directly to prove their made of matter, how can we be sure antimatter galaxies don’t exist?

One clue comes from the way matter and antimatter interact. Although both behave much the same on their own, when matter and antimatter collide they can annihilate each other to produce intense gamma rays. Although the vast regions between galaxies are mostly empty, they aren’t complete vacuums. Small amounts of gas and dust drift between galaxies, creating an intergalactic wind. If a galaxy were made of antimatter, any small amounts of matter from the intergalactic wind would annihilate with antimatter on the outer edges of the galaxy and produce gamma rays. If some galaxies were matter and some antimatter, we would expect to see gamma ray emissions in the regions between them. We don’t see that. Not between our Milky Way and other nearby galaxies, and not between more distant galaxies. Since our region of space is dominated by matter, we can reasonably assume that other galaxies are matter as well.

It’s still possible that our visible universe just happens to be matter dominated. There may be other regions beyond the visible universe that are dominated by antimatter, and its simply too far away for us to see. That’s one possible solution to the matter-antimatter cosmology problem. But that would be an odd coincidence given the scale of the visible universe.

So there might be distant antimatter galaxies in the Universe, but we can be confident that the galaxies we do see are made of matter just like us.

Wait while more posts are being loaded