People

In their circles

138 people

Start a hangout

Tim Forsythe

Lives in Huntington Beach

7,717 followers|512,669 views

AboutPostsCollectionsPhotosYouTube

People

In their circles

138 people

Collections Tim is following

Contact Information

Home

- tjforsythe@gmail.com
| |

Story

Tagline

Just add coffee

Places

Currently

Huntington Beach

Links

YouTube

Links

Gigatrees now supports the very popular Disqus commenting system. You can now easily allow your visitors to provide feedback on your family tree. When en

1

Add a comment...

I new he was going to say that. What I didn't know, it that he will say it again and again and again, and probably said it before.

A version of this image was posted [1] with the question: "Will these jellyfish ever make it back to their original place?" +Kimberly Chapman pointed out the obvious "yes, because it's an animated GIF and those loop." But here's something you might not expect: even if it weren't an animated GIF, even if these jellyfish were being moved around by a program using random numbers, I could guarantee that they always repeat.

(Or to be a bit more careful, if you watch it long enough, you'll always see*a* repetition. It might not be the very first position that repeats)

Why? Let's imagine a simpler case for a moment, involving a 2x2 grid of jellyfish, each of a different color so we can tell them apart. There are 24 possible ways we could arrange the jellyfish: if you start with an empty grid, there are four places to put the red jellyfish; for each of those places, there are three remaining possible places to put the blue one; for each of those, there are two remaining possible places to put the green one; and once you've chosen those three, there's only one place the yellow one could go. So there are 4*3*2*1=24 possible jellyfish patterns. (Written 4!, "4 factorial")

Each time the jellyfish move, we move from one of these 24 configurations into another. As it happens, the motions below are very limited -- each jellyfish has to move onto a dot next door -- but that turns out not to matter, because even if the jellyfish could teleport, they'd still have to repeat.

Why? Imagine that we look at the first 25 moves. The jellyfish will end up in 25 configurations, but there are only 24 different configurations total, which means that at least one configuration had to happen twice!

This is called the*pigeonhole principle:* if you have N+1 pigeons in N pigeonholes, at least one hole has to contain two pigeons. (In this case, you have 25 configurations in 24 distinct slots)

If the rule going from one configuration to the next is*deterministic* -- that is, if the next move depends only on where the jellyfish are right now -- then you know that once a single repetitive loop happens, that loop will continue to repeat forever, because you're back at the first stage of the loop and will then have to go on to the second one, etc.

If the rule isn't deterministic -- say, if each time the jellyfish move randomly -- then no particular pattern is guaranteed to repeat, but you know that no more than once every 25 moves, at least once the jellyfish will repeat their pattern.

The same thing is true for this bigger grid; you just need to wait a bit longer. The 16x16 grid below has 256 jellyfish, so you need to wait for 256!+1 steps -- that's 256*255*...*3*2*1 + 1 steps, or about 8*10^506 steps [2] -- but no matter what, the jellyfish are absolutely guaranteed to repeat.

What's even more interesting is that this may apply to more than just jellyfish. One set of rules that we know are deterministic are the laws of physics. [3] Now, an interesting open question in physics is: is there a minimum granularity of spacetime, so that we can think of the entire universe as being on some kind of extremely fine grid? (When I say "extremely fine," I mean a grid size of the Planck length, about 1.6*10^-35 meters. For comparison, that's as much smaller than a proton as a proton is smaller than the San Francisco Bay Area.)

There are some reasons to believe that this may actually be true (although the geometry is a lot more complicated than a simple grid, and in fact "geometry" isn't even the right word for it; the whole expansion of the universe, from the big bang on, is part of it). If it is, then there's something interesting: we could imagine the entire universe as a gigantic grid, and the current state of the universe is given by deterministic laws about what's on that grid, then we know that*the state of the universe itself* must ultimately repeat.

Of course, "ultimately" is a pretty long time horizon: if you think the number below is big, that's what we got with only 256 jellyfish. The total number of "jellyfish" needed to describe the universe is going to be something like 10^245, and so the number of moves it would take would be unimaginably huge.

But if this repetition is real, then it has some very interesting consequences. For example, it's one way to explain why we happen to observe physical constants in our universe that are consistent with the existence of human life. [4] If those "constants" are actually controlled by the state of the universe, and the universe ultimately steps through all possible states, then it isn't surprising that we'll look out the window and see the constants that we could survive in; when the universe was in all of those other possible states, we weren't around to see it.

If, on the other hand, the universe has infinitely many states in it, then no recurrence need ever happen; it can keep changing indefinitely, and the entire argument above falls apart. This is one of the very few times that "finite but very big" and "infinite" are meaningfully different in physics.

This sort of analysis is called an "anthropic" analysis, and while it seems unsatisfying in some ways -- it doesn't*explain* the values of the constants, after all, or tell us what other constants might allow us to exist, it just tells us why they happen to be that right now -- it's a real possibility that this is what's actually going on. The entire debate over this, whether these recurrences (they're called Poincaré Recurrences, after the French mathematician who first described the math above) occur in nature and whether Anthropy is an explanation for the world, is a major open question in fundamental physics today.

So whether the jellyfish are moving in an animated GIF or powering the basic laws of physics, remember this: Finite patterns must always repeat; infinite patterns don't have to.

And now, you may return to staring at the GIF to your heart's content.

[1] By +AsapSCIENCE, but without real source credit. I strongly suspect, but cannot verify, that this is the work of the great Dave Whyte of beesandbombs.tumblr.com, which if you like GIFs like these you should absolutely check out. If anyone knows where this image actually came from, I'd love to know.

[2] If you want to be precise about it, it's 857,817,775,342,842,654,119,082,271,681,232,625,157,781,520,279,485,619,859,655,650,377,269,452,553,147,589,377,440,291,360,451,408,450,375,885,342,336,584,306,157,196,834,693,696,475,322,289,288,497,426,025,679,637,332,563,368,786,442,675,207,626,794,560,187,968,867,971,521,143,307,702,077,526,646,451,464,709,187,326,100,832,876,325,702,818,980,773,671,781,454,170,250,523,018,608,495,319,068,138,257,481,070,252,817,559,459,476,987,034,665,712,738,139,286,205,234,756,808,218,860,701,203,611,083,152,093,501,947,437,109,101,726,968,262,861,606,263,662,435,022,840,944,191,408,424,615,936,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,001 steps.

[3] You may have heard something about "quantum randomness," but this isn't actually randomness; the actual evolution of wave functions is completely, 100%, deterministic, even in quantum mechanics.

[4] The Standard Model of particle physics is controlled by about 20 basic constants, like the mass of the electron and the strength of gravity. Our world is weirdly sensitive to some of them: if the down quark were 10% heavier, say, then stars would never form, and neither would nearly any other kind of matter. What controls these 20 values? Good question. We don't know yet.

(Or to be a bit more careful, if you watch it long enough, you'll always see

Why? Let's imagine a simpler case for a moment, involving a 2x2 grid of jellyfish, each of a different color so we can tell them apart. There are 24 possible ways we could arrange the jellyfish: if you start with an empty grid, there are four places to put the red jellyfish; for each of those places, there are three remaining possible places to put the blue one; for each of those, there are two remaining possible places to put the green one; and once you've chosen those three, there's only one place the yellow one could go. So there are 4*3*2*1=24 possible jellyfish patterns. (Written 4!, "4 factorial")

Each time the jellyfish move, we move from one of these 24 configurations into another. As it happens, the motions below are very limited -- each jellyfish has to move onto a dot next door -- but that turns out not to matter, because even if the jellyfish could teleport, they'd still have to repeat.

Why? Imagine that we look at the first 25 moves. The jellyfish will end up in 25 configurations, but there are only 24 different configurations total, which means that at least one configuration had to happen twice!

This is called the

If the rule going from one configuration to the next is

If the rule isn't deterministic -- say, if each time the jellyfish move randomly -- then no particular pattern is guaranteed to repeat, but you know that no more than once every 25 moves, at least once the jellyfish will repeat their pattern.

The same thing is true for this bigger grid; you just need to wait a bit longer. The 16x16 grid below has 256 jellyfish, so you need to wait for 256!+1 steps -- that's 256*255*...*3*2*1 + 1 steps, or about 8*10^506 steps [2] -- but no matter what, the jellyfish are absolutely guaranteed to repeat.

What's even more interesting is that this may apply to more than just jellyfish. One set of rules that we know are deterministic are the laws of physics. [3] Now, an interesting open question in physics is: is there a minimum granularity of spacetime, so that we can think of the entire universe as being on some kind of extremely fine grid? (When I say "extremely fine," I mean a grid size of the Planck length, about 1.6*10^-35 meters. For comparison, that's as much smaller than a proton as a proton is smaller than the San Francisco Bay Area.)

There are some reasons to believe that this may actually be true (although the geometry is a lot more complicated than a simple grid, and in fact "geometry" isn't even the right word for it; the whole expansion of the universe, from the big bang on, is part of it). If it is, then there's something interesting: we could imagine the entire universe as a gigantic grid, and the current state of the universe is given by deterministic laws about what's on that grid, then we know that

Of course, "ultimately" is a pretty long time horizon: if you think the number below is big, that's what we got with only 256 jellyfish. The total number of "jellyfish" needed to describe the universe is going to be something like 10^245, and so the number of moves it would take would be unimaginably huge.

But if this repetition is real, then it has some very interesting consequences. For example, it's one way to explain why we happen to observe physical constants in our universe that are consistent with the existence of human life. [4] If those "constants" are actually controlled by the state of the universe, and the universe ultimately steps through all possible states, then it isn't surprising that we'll look out the window and see the constants that we could survive in; when the universe was in all of those other possible states, we weren't around to see it.

If, on the other hand, the universe has infinitely many states in it, then no recurrence need ever happen; it can keep changing indefinitely, and the entire argument above falls apart. This is one of the very few times that "finite but very big" and "infinite" are meaningfully different in physics.

This sort of analysis is called an "anthropic" analysis, and while it seems unsatisfying in some ways -- it doesn't

So whether the jellyfish are moving in an animated GIF or powering the basic laws of physics, remember this: Finite patterns must always repeat; infinite patterns don't have to.

And now, you may return to staring at the GIF to your heart's content.

[1] By +AsapSCIENCE, but without real source credit. I strongly suspect, but cannot verify, that this is the work of the great Dave Whyte of beesandbombs.tumblr.com, which if you like GIFs like these you should absolutely check out. If anyone knows where this image actually came from, I'd love to know.

[2] If you want to be precise about it, it's 857,817,775,342,842,654,119,082,271,681,232,625,157,781,520,279,485,619,859,655,650,377,269,452,553,147,589,377,440,291,360,451,408,450,375,885,342,336,584,306,157,196,834,693,696,475,322,289,288,497,426,025,679,637,332,563,368,786,442,675,207,626,794,560,187,968,867,971,521,143,307,702,077,526,646,451,464,709,187,326,100,832,876,325,702,818,980,773,671,781,454,170,250,523,018,608,495,319,068,138,257,481,070,252,817,559,459,476,987,034,665,712,738,139,286,205,234,756,808,218,860,701,203,611,083,152,093,501,947,437,109,101,726,968,262,861,606,263,662,435,022,840,944,191,408,424,615,936,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,001 steps.

[3] You may have heard something about "quantum randomness," but this isn't actually randomness; the actual evolution of wave functions is completely, 100%, deterministic, even in quantum mechanics.

[4] The Standard Model of particle physics is controlled by about 20 basic constants, like the mass of the electron and the strength of gravity. Our world is weirdly sensitive to some of them: if the down quark were 10% heavier, say, then stars would never form, and neither would nearly any other kind of matter. What controls these 20 values? Good question. We don't know yet.

1

1

Add a comment...

I wonder if there are also customs records for moon rocks.

1

1

Add a comment...

Vans US Open of Surfing in Huntington Beach, California this week. The crowds have arrived.

1

Add a comment...

I read **Fallacy** a couple years ago, so was very glad to see this update and summary.

In this essay, as a follow-up to his book, The Fallacy of Fine-Tuning: Why the Universe Is Not Designed for Us (in which he showed that, based on our knowledge of this universe alone, divine fine-tuning claims are without merit), Victor J. Stenger brings the arguments up-to-date with a discussion of the eternal multiverse hypothesis. This article was published in Skeptic magazine issue 19.3 in 2014. Order this back issue.

1

Add a comment...

Z Camera launches Micro Four Thirds E1 camera with 4K video and open platform

Z Camera, a China-based photography startup, has introduced a connected Micro Four Thirds camera called the E1. Shaped like GoPro's HERO action cameras, the E1 carries a 16MP Four Thirds sensor and can record video at 4K 4096x2160 resolution. It provides Wi-Fi connectivity and an open platform for developers. Read more

1

Add a comment...

New improvements to Gigatrees' family trees.

Gigatrees's Location Parser has been updated. Gigatrees now attempts to fill in missing counties and states for locations whereas before it only attempted

2

Add a comment...

From EarthSky:

https://earthsky.org/science-wire/seeing-the-star-with-nearest-rocky-planet-hd219134

3

Add a comment...

Spotted this old DeSoto a couple doors down from my son's place. Appears to be well equipped, including a bullet hole in one of the rear side windows.

5

Probably worth more than a new car - even in this condition.

Add a comment...

Vans US Open of Surfing in Huntington Beach, California this week. Surfing is, more or less, a spectator sport.

1

1

Add a comment...

Such fun.

Science Fiction is a pretty broad genre. And one of the more popular sub-genres is Steampunk. And for a sub-genre, steampunk is pretty cool. Not to mention it has a devoted fan base and its own conventions (likeConTemporal). So it's no surprise that there are a number of amateur steampunk films - and many of them have some impressive graphics. This list is dedicated to these amateur works of art, which deserve more attention among the broader Sci...

2

1

Add a comment...

Most of us know that “the” is the most common word in the English language. But what are some other high-frequency words, both long and short? This amazing animated data bubble visualization by Abacaba provides the answers.

1

Add a comment...

Tim's Collections