Profile cover photo
Profile photo
INO-CNR Laboratorio Irraggiamento Laser Intensi (ILIL)
5 followers
5 followers
About
Posts

Post has attachment
Iniziata la fase finale di messa a punto dell'amplificatore laser di altissima potenza presso il laboratorio ILIL del CNR di Pisa. L'energia delle sorgenti laser primarie (luce verde della foto) illumina il cristallo di zaffiro nel quale avviene l'amplificazione di impulsi di luce infrarossa.. Alla fine del processo si ottiene un impulso di luce della durata di 30 milionesimi di miliardesimi di secondo con una potenza fino ad un milione di miliardi di Watt!
Photo
Add a comment...

Post has attachment
Il 9 maggio Mercurio transita davanti al sole. Un evento da osservare con la guida di un esperto delle osservazioni solari! Proteggiamo gli occhi!
Add a comment...

Post has attachment
Si ritrovano a Pisa dal 29 giugno al 1° luglio gli esperti degli acceleratori di particelle del futuro per avviare la progettazione dell'acceleratore a plasma europeo.
Add a comment...

Post has attachment
EVER WONDERED WHAT POWERFUL LASERS CAN DO FOR HUMANKIND?
Forget about laser pointers, laser cutters or other gadget-like devices. What we are talking about here are really global-scale ideas that may open new horizons or even save us from extinction.
With the discovery of gravitational waves, the entire world learned that lasers are, by far, the most precise tools for measuring distances with an unimaginable accuracy. This is the classical way of using lasers to “probe” the universe.
What about using lasers to help us take control?
Recently we read about a novel idea, the StarShot project whose objective is so ambitious to be almost classified in the realm of sci-fi. Accelerating a tiny, ultra-light space-probe to travel at 20% of the speed of light to reach and explore the closest star, Proxima Centauri, in 20 years or less. Compared to the fastest space probe ever built, this is at least a thousand times faster!
What kind of technology could be used to achieve such a fantastic speed? Needless to say, powerful lasers! Very powerful indeed, up to 100.000.000.000 Watts of continuous light fired into the sky for minutes to fill the shiny sails of the space-probe and accelerate it towards Alpha Centaury. Does such a laser exist? No, but the technology to conceive it is coming along nicely, driven by other ambitious applications. Laser fusion is certainly one of the most challenging applications where high power lasers are used to ignite a pellet of nuclear fusion fuel. Although the high power laser light for ignition is only required for a tiny fraction of a second, eventually, a laser fusion reactor will produce energy by replicating the ignition process tens or hundreds of times per second and the laser needed for this operation will require a similar development as that expected for the StarShot project.
With laser fusion in mind, laser scientist have been developing new and more efficient lasers which, one day, could replace old-fashion technology with new and much more energy efficient schemes.
Is that all? One may argue that, for the time being, we don’t really need to explore Proxima Centaury and we can do without fusion and use the big money inevitably needed to develop these lasers to tackle other, more compelling issues. So, what about an extinction-level impact with an asteroid? Is that a sufficiently compelling issue to be prepared for?
Could high power lasers be used to change the trajectory of asteroid on a collision course with Earth? Yes, a sufficiently powerful laser could be used to “ablate” the surface of the asteroid and change its trajectory as much as it is required to avoid collision.
Bye the way, a similar concept could also work, to a smaller scale, to clean the space around the Earth from the large amount of space debris originating from artificial satellites.

If you are not yet confident that lasers can do a lot more for humankind, what about a breakthrough in medical imaging and cancer radiotherapy? Very high power lasers are in fact a strong candidate to replace existing technology in favour of a new generation of compact laser-plasma accelerators, which may finally make superior phase contrast X-ray imaging techniques readily available in all hospitals and make very early detection of tumors a routine. Beyond that, lasers could also make the most advanced therapies, including hadron therapy, spread widely, reducing costs and size of devices and opening a new era of precision radiotherapy.
The side effect of this research may even be the establishment of an entirely new particle accelerator technology which may also provide high energy particle physicists with a viable solution to help reaching the required 100 TeV, sparing a fraction of those 100 km needed with current accelerator technology to go beyond LHC.
These and other major challenges will have a greater chance of success if research into high power laser science and technology will become one of the priorities of private and public funding, bearing in mind that laser technology requires significant capital investments to enable basic research in a variety of areas and pilot demonstrators development. Europe is playing a major role in promoting construction of new user laser infrastructures like the Extreme Light Infrastructure, and European countries are funding national initiatives in this area. More investments are expected as more and more ideas are moving from the lab to the industry. The future of high power lasers looks brighter than ever!
PhotoPhotoPhotoPhotoPhoto
16/04/16
6 Photos - View album
Add a comment...

Post has attachment
Uno sguardo ai progetti dell'Istituto Nazionale di Ottica del CNR a Pisa. Questo progetto riguarda l'innovazione nel campo delle sorgenti di radiazione per la radioterapia e la diagnostica per immagini in biologia e medicina.
Add a comment...

Post has attachment

Post has attachment
Add a comment...

Post has attachment
Attivati al massimo!!!
Photo
Add a comment...

Post has attachment
Finanziato un nuovo progetto Europeo Horizon 2020 denominato "EuPRAXIA", finalizzato allo studio di una rivoluzionaria sorgente compatta di radiazione X basata sull'accelerazione a plasma.
Il progetto si basa sulle speciali proprietà di un plasma, un gas ionizzato, che consentono di accelerare particelle in modo molto più efficace che negli attuali acceleratori di particelle. Grazie ad un laser di altissima intensità sarà possibile impiegare questa tecnologia fortemente innovativa che consentirà di ridurre drasticamente le dimensioni degli acceleratori di particelle e delle sorgenti di radiazione. Il progetto, coordinato dal laboratorio Desy, vede la partecipazione delle principali istituzioni di ricerca europee. Per l'Italia partecipano l'INFN, l'ENEA e il CNR con l'Istituto Nazionale di Ottica e il suo Laboratorio di Irraggiamento laser Intensi di Pisa.
Add a comment...

Post has attachment
Il CERN Courier commenta l'articolo apparso su Nature Comm. (G Sarri et al. 2015 Nat. Commun. 6 6747.) sulla creazione di fasci di materia e antimateria con laser intensi.
Add a comment...
Wait while more posts are being loaded