Shared publicly  - 
 
GATE1988-12iib - Using Armstrong’s axioms of functional dependency derive the following rules: $\{ x \rightarrow y. \: wy \rightarrow z \} = xw \rightarrow z$ (Note: $x \rightarrow y$ denotes $y$ is functionally dependenet on $x$, $z \subseteq y$ denotes $z$ is subset of $y$, and $\mid =$ means derives).
Using Armstrong's axioms of functional dependency derive the following rules: $\{ x \rightarrow y. \: wy ... of $y$, and $\mid =$ means derives).
1
Add a comment...