### Dan Piponi

Shared publicly -Many people think of religions primarily as systems of belief. I think this may be a skewed view because of the predominance of Christianity and Islam, both of which make creeds prominent. For example, although Judaism does have something like a creed, it tends to place more emphasis on practice than belief.

This reflects my view of mathematics. I think that for many, mathematics is a matter of belief. For them, mathematics is a way to find out what is and isn't true. I tend to see mathematics as a set of practices. As a result, I find myself bemused by debates over whether 2 really exists, or whether infinite sets exist, whether the continuum really is an infinite collection of points, whether infinitesimals exist, whether the axiom of choice is true, and so on. I find some ultrafinitists particularly confusing. They seem to believe themselves to be expressing skepticism of some sort, whereas to me, expressing skepticism about mathematical constructions is a category error. So to me, these ultrafinitists are surprising because of what they believe, not because of what they don't. This doesn't just apply to ultrafinitists. In an essay by Boolos [1], he seems confident in the self-evident truth of the existence of integers, say, but expresses more and more doubt as he considers larger and larger cardinals. Many mathematicians seem to have a scale of believability, and ultrafinitists just draw the scale differently.

Conversations between people who view mathematics (or religion) as being about beliefs, and people who view mathematics (or religion) as being about practices, can often be at cross purposes. And members of one group can often find themselves dragged into debates that they don't care for because of the framing of questions. (I don't want to debate the existence infinite sets, not because I can't justify my beliefs, but because I'm more interested in how to use such sets. I don't think belief is a precondition for use.)

Of course you can't completely separate belief and practice and I certainly do have some mathematical beliefs. For example I put a certain amount of trust in mathematics in my daily job because I believe certain practices will allow me to achieve certain goals.

[1] Must we believe in Set Theory? https://books.google.com/books/about/Logic_Logic_and_Logic.html?id=2BvlvetSrlgC (I hope I'm not mischaracterizing this essay, but even if I am, the point still stands.)

This reflects my view of mathematics. I think that for many, mathematics is a matter of belief. For them, mathematics is a way to find out what is and isn't true. I tend to see mathematics as a set of practices. As a result, I find myself bemused by debates over whether 2 really exists, or whether infinite sets exist, whether the continuum really is an infinite collection of points, whether infinitesimals exist, whether the axiom of choice is true, and so on. I find some ultrafinitists particularly confusing. They seem to believe themselves to be expressing skepticism of some sort, whereas to me, expressing skepticism about mathematical constructions is a category error. So to me, these ultrafinitists are surprising because of what they believe, not because of what they don't. This doesn't just apply to ultrafinitists. In an essay by Boolos [1], he seems confident in the self-evident truth of the existence of integers, say, but expresses more and more doubt as he considers larger and larger cardinals. Many mathematicians seem to have a scale of believability, and ultrafinitists just draw the scale differently.

Conversations between people who view mathematics (or religion) as being about beliefs, and people who view mathematics (or religion) as being about practices, can often be at cross purposes. And members of one group can often find themselves dragged into debates that they don't care for because of the framing of questions. (I don't want to debate the existence infinite sets, not because I can't justify my beliefs, but because I'm more interested in how to use such sets. I don't think belief is a precondition for use.)

Of course you can't completely separate belief and practice and I certainly do have some mathematical beliefs. For example I put a certain amount of trust in mathematics in my daily job because I believe certain practices will allow me to achieve certain goals.

[1] Must we believe in Set Theory? https://books.google.com/books/about/Logic_Logic_and_Logic.html?id=2BvlvetSrlgC (I hope I'm not mischaracterizing this essay, but even if I am, the point still stands.)

26

3

8 comments

I'm very much in your practice-oriented camp religiously, and secondarily mathematically, as you know: http://immanence.org/post/perspectivism-and-post-rationalism/

Add a comment...