http://arxiv.org/abs/1508.02228The ramification filtration in certain $p$-extensions

Chandan Singh Dalawat

(Submitted on 10 Aug 2015 (v1), last revised 16 Aug 2015 (this version, v2))

Abstract : We show that the recent result of Castañeda and Wu about the ramification filtration in certain p-extensions of function fields of prime characteristic p is equally valid over local fields of mixed characteristic (0,p). Apart from being applicable to both equicharacteristic and mixed characteristic cases, our method has the advantage of being purely local, purely conceptual, more natural, and much shorter.

Bibliography

CAPUANO (L) & DEL CORSO (I):

Upper ramification jumps in abelian extensions of exponent $p$,

Preprint,

http://arxiv.org/abs/1407.2496CASTAÑEDA (J) & WU (Q):

The ramification group filtrations of certain function field extensions,

Pacific Journal of Mathematics 276.2 (2015), 309--320.

http://msp.org/pjm/2015/276-2/p04.xhtmlDALAWAT (C):

Local discriminants, kummerian extensions, and elliptic curves,

J. Ramanujan Math. Soc. 25.1 (2010), 25--80.

https://drive.google.com/open?id=0B8EHtI8F9qdIZDA1ZGFlYzAtNTIyOS00ZDdmLWFjYTQtYTRiMzQyZWY5ZTI4Cf.

http://arxiv.org/abs/0711.3878DALAWAT (C):

Further remarks on local discriminants,

J. Ramanujan Math. Soc. 25.4 (2010), 393--417.

https://drive.google.com/open?id=0B8EHtI8F9qdIYWI5YTdmNzUtNmRkMC00NmRiLTliZjAtMTdkNmM0ZjBhMDEyCf.

http://arxiv.org/abs/0909.2541DALAWAT (C):

Final remarks on local discriminants,

J. Ramanujan Math. Soc. 25.4 (2010), 419--432.

https://drive.google.com/open?id=0B8EHtI8F9qdINTI2N2RlNjgtOGFkMC00Y2IxLWE3YzctMDkyOGNkZDY2M2U5Cf.

http://arxiv.org/abs/0912.2829SERRE (J-P):

Corps locaux,

Publications de l'Université de Nancago, No. VIII, Hermann,

Paris, 1968, 245 pp.

Cf.

https://books.google.com/books?isbn=1475756739